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Research Objective
• Observation: use of mathematical optimization 

techniques frequently leads to designs whose 
performance is very sensitive to small fluctuations 
in the design model parameters.

• Some of these parameters can be highly variable 
or hard to estimate.

• Objective: adapt existing optimization techniques 
such that the solution becomes fairly insensitive to 
(minor) fluctuations in some or all of the 
mathematical model parameters.



Definition of Robust Design
• Robust optimization results in the design, 

which performs optimally under the 
variable (or uncertain) operating conditions 
over the entire lifetime of the design.

• For this computation we assume there are 
no catastrophic failures; we are dealing with 
everyday fluctuations. This is quite different 
from reliability computations.
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Airfoil Geometry Optimization
• Find optimal airfoil geometry, which results in 

minimum drag Cd over a range of free flow Mach 
numbers M while maintaining a given lift Cl

* = 0.6. 
We start from a NACA-0012 airfoil. 

• For this example we assume a uniform distribution 
for the Mach numbers: M ∈ [0.7, 0.8]. All Mach 
numbers within this range are equally likely. The 
Mach number cannot fall outside this interval.

• We solve the inviscid Euler equations using 
NASA’s FUN2D code, which computes analytic 
derivatives. Far field boundary at 50 chord lengths.



Design Variables in FUN-2D
• Design vector d: 

angle of attack and 
20 box-constrained y-
coordinates of the 
control points for the 
airfoil spline

α



Deterministic Optimization
Highlight 2 popular methods:
• Single-Point Design
• Multi-Point Design



Single Design-Point Optimization
• The design vector d (geometry and angle of 

attack) is the only variable in the objective
• Fix all other model parameters at their 

design value. We consider only 1 free flow 
Mach number Μ = Μdesign (e.g. average 
Mach number during cruise stage):





≥
∈

*),(tosubject
),(min

ldesignl

designdDd

CMdC
MdC



Problems with Single Point Opt.
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Problems with Single Point Opt.
• Not clear which point to select as design point. 

The mean value is not a good choice for the design 
point when the model is highly non-linear. 

• Even though we are trying to push out MDIV, the 
highest Mach number (M = 0.8) is not necessarily 
the best design point either.

• The impact of fluctuations of the model 
parameters (due to either inherent variability or 
model uncertainty) on the response is completely 
unknown. The optimized design may actually 
perform worse under such “off-design point” 
operating conditions.



Multi-Point Optimization
• The design vector d (geometry and angle of 

attack) is the only variable in the objective
• Consider multiple design conditions at selected 

values of the free flow Mach number
• Objective function is a weighted average of all 

these design conditions
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Problems with Four-Point Opt.
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Problems with Multi-Point Opt.
• The resulting drag profile is sensitive to the 

choice of Mach numbers. It is not clear how 
to decide which Mach numbers to include in 
the objective.

• What is the appropriate weight for each 
design condition (i.e. Mach number) in the 
overall linear combination?

• Multiple drag troughs can be observed, one 
at each sample point.



Stochastic Optimization
• Modify the objective to directly incorporate 

the effects of model uncertainties on the 
design performance

• Highlight 2 methods:
– Expected Value Optimization
– Second-Order Approximate Results



Statistical Decision Making Tree
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Statistical Decision Making
• Consider all possible designs di and set up a 

decision tree.
• Model all uncertain variables using (Joint) 

Probability Density Functions
• The objective is to minimize the drag over 

the entire Mach range.
• This shows that the best decision (or design) 

is the one which minimizes the expected 
value of the drag Cd with respect to M.



Mathematical Formulation
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Cd is drag function

d is design vector (geometry, angle of attack)

Μ is uncertain parameter (Mach number)

fM is Probability Density Function of Mach number

Minimize the expected value of the drag 
over the design lifetime:



Application to Airfoil Problem
• Integrate over the uncertain parameter Μ, compute 

the expected value of Cd with respect to the free 
flow Mach number Μ.

• Minimize this integrated objective with respect to 
the design vector d.

• Actual flight data are readily incorporated in the 
probability density function fM(M)
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SOSM Approximation
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Approximate objective by second-order Taylor 
series expansion about the mean value of M, and 
evaluate the expectation integral analytically.



Comparison with Single Point Opt.
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Comparison with Single Point Opt.
• Second-Order information represents 

curvature of Cd-M curve.
• The weighting between drag and design 

point and curvature depends on the variance 
of the Mach number. 

• With SOSM method the drag is not reduced 
quite as much as for single point design but 
the drag is much less sensitive to variations 
in the Mach number. The drag trough is 
avoided, no “over-optimization”.



Direct Evaluation of Integral
• Evaluate integral directly using a numerical 

integration method.
• To avoid over-optimization, make sure you 

select different integration points for each 
optimization step.

• We used 4 point integration with random 
selection of integration points.



Comparison with Multi-Point Opt.
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Advantages of Expected Value Opt.
• Robust design consistently has smallest expected 

value (up to accuracy of integration)
• No need to arbitrarily select design conditions (i.e. 

Mach numbers) or weights any longer because we 
integrate over the PDF of the operating conditions. 

• Drag troughs are reduced and do not occur at 
integration points any longer.

• Possibility to account for additional model 
uncertainties as well by extending the integration 
over the uncertain model parameters.



Overall Comparison
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Relative Computational Effort
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Conclusions
• Statistical decision theory indicates that 

minimizing the expected drag over the lifetime 
leads to the optimal robust design. This removes 
the arbitrariness from the selection of the design 
conditions and/or weights, which is found in 
multi-point optimization. 

• SOSM shows considerable improvement in the 
robustness of the design compared to single-point.

• The SOSM analytical approximation shows that, 
at the mean Mach number, the first-order 
sensitivity does not affect the expected value of 
the design. 



Further Work
• Extend the method to include effects of 

other uncertainties besides the Mach 
number; preferably using faster integration 
techniques (adaptive sampling)

• Extend the physics (include viscous effects) 
and assess the impact of additional 
uncertainties in the physical models on the 
design performance



Differences Presentation & Paper
• In the paper, all results are for Cl

* = 0.175. 
Single and multi-point results are computed 
using both a coarse and fine grids. Results 
for expected value optimization are for the 
coarser grid only. 

• In this presentation all results (single and 
multi-point, SOSM, expected value) are for 
the fine grid, and higher target lift Cl

* = 0.6.  


